Деление в столбик

Деление многозначных или многоразрядных чисел удобно производить письменно в столбик. Давайте разберем, как это делать. Начнем с деления многоразрядного числа на одноразрядное, и постепенно увеличим разрядность делимого.

Итак, поделим 354 на 2. Для начала разместим эти числа как показано на рисунке:

деление в столбик

Делимое размещаем слева, делитель справа, а частное будем записывать под делителем.

Теперь начинаем делить делимое на делитель поразрядно слева на право. Находим первое неполное делимое, для этого берем первый слева разряд, в нашем случае 3 и сравниваем с  делителем.

3 больше 2, значит 3 и есть неполное делимое. Ставим точку в частном и определяем, сколько ещё разрядов будет в частном – столько же, сколько осталось в делимом после выделения неполного делимого. В нашем случае в частном столько же разрядов, сколько в делимом, то есть старшим разрядом будут сотни:

delen_v_st_2

Для того чтобы 3 разделить на 2 вспоминаем таблицу умножения на 2 и находим число при умножении которого на 2 получим наибольшее произведение, которое меньше 3.

2 × 1 = 2               (2 < 3)

2 × 2 = 4               (4 > 3)

2 меньше 3, а 4 больше, значит, берем первый пример и множитель 1.

Записываем 1 в частное на место первой точки (в разряд сотен), а найденное произведение записываем под делимым:

delen_v_st_3

Теперь находим разность, между первым неполным делимым и произведением найденного разряда частного и делителем:

delen_v_st_4

Далее находим второе неполное делимое, для этого значение следующего разряда делимого опускаем к разности:

delen_v_st_5

Полученное значение сравниваем с делителем. 15 больше 2, значит, мы нашли второе неполное делимое. Для того чтобы найти результат деления 15 на 2 вновь вспоминаем таблицу умножения на 2 и находим наибольшее произведение, которое меньше 15:

2 × 7 = 14             (14 < 15)

2 × 8 = 16             (16 > 15)

Искомый множитель 7, записываем его в частное на место второй точки (в десятки). Находим разность между вторым неполным делимым и произведением найденного разряда частного и делителя:

delen_v_st_6

Продолжаем деление, для чего находим третье неполное делимое. Спускаем следующий разряд делимого:

delen_v_st_7

Делим неполное делимое на 2, полученное значение ставим в разряд единиц частного. Проверим правильность деления:

2 × 7 = 14

Результат деления третьего неполного делимого на делитель пишем в частное, находим разность:

delen_v_st_8

Разность мы получили равную нулю, значит деление произведено правильно.

Усложним задачу и приведем другой пример:

1020 ÷ 5

Запишем наш пример в столбик и определим первое неполное частное:

delen_v_st_21

Разряд тысяч делимого составляет 1, сравниваем с делителем:

1 < 5

Добавляем в неполное делимое разряд сотен и сравниваем:

10 > 5 – мы нашли неполное делимое.

Делим 10 на 5, получаем 2, записываем результат в частное. Разность между неполным делимым и результатом умножения делителя и найденного разряда частного.

delen_v_st_22

10 – 10 = 0

0 мы не пишем, опускаем следующий разряд делимого – разряд десятков:

delen_v_st_23

Сравниваем второе неполное делимое с делителем.

2 < 5

Нам следует добавить в неполное делимое ещё один разряд, для этого в частное, на разряд десятков ставим 0:

delen_v_st_24

20 ÷ 5 = 4

Записываем ответ в разряд единиц частного и проверяем: записываем произведение под второе неполное делимое и вычисляем разность. Получаем 0, значит пример решён правильно.

И ещё 2 правила деления в столбик:

1. Если в делимом и делителе в младших разрядах стоят нули, то перед делением их можно сократить, например:

delen_v_st_41

Сколько нулей в младшем разряде делимого мы убираем, столько же нулей убираем в младших разрядах делителя.

2. Если в делимом после деления остались нули, то их следует перенести в частное:

delen_v_st_51

Итак, сформулируем последовательность действий при делении в столбик.

  1. Размещаем делимое слева, делитель справа. Помним, что делимое мы делим, поразрядно выделяя неполные делимые и деля их последовательно на делитель. Разряды в неполное делимое выделяются слева направо от старших к младшим.
  2. Если в делимом и делителе в младших разрядах стоят нули, то перед делением их можно сократить.
  3. Определяем первый неполный делитель:

а) выделяем в неполный делитель старший разряд делимого;

б) сравниваем неполное делимое с делителем, если делитель больше, то переходим к пункту (в), если меньше, значит, мы нашли неполное делимое и можем переходить к пункту 4;

в) добавляем в неполное делимое следующий разряд и переходим к пункту (б).

  1. Определяем сколько разрядов будет в частном, и ставим столько точек на месте частного (под делителем) сколько будет в нем разрядов. Одна точка (один разряд) за все первое неполное делимое и остальных точек (разрядов) столько же, сколько осталось разрядов в делимом после выделения неполного делимого.
  2. Делим неполное делимое на делитель, для этого находим число, при умножении которого на делитель получилось бы число либо равное неполному делимому, либо меньше его.
  3. Найденное число записываем на место очередного разряда частного (точки), а результат умножения его на делитель записываем под неполным делимым и находим их разность.
  4. Если найденная разность меньше или равна неполному делимому значит, мы правильно поделили неполное делимое на делитель.
  5. Если в делимом остались еще разряды, то продолжаем деление, иначе переходим к пункту 10.
  6. Опускаем к разности следующий разряд делимого и получаем очередное неполное делимое:

а) сравниваем неполное делимое с делителем, если делитель больше, то переходим к пункту (б), если меньше, значит, мы нашли неполное делимое и можем переходить к пункту 4;

б) добавляем к неполному делимому следующий разряд делимого, при этом в частное на место следующего разряда (точки) пишем 0;

в) переходим к пункту (а).

10. Если мы выполняли деление без остатка и последняя найденная разность равна 0, то мы правильно выполнили деление.

Мы говорили о делении многоразрядного числа на одноразрядное. В случае, когда разрядность делителя больше, деление выполняется аналогично:

delen_v_st_31

Спасибо, что вы с нами.

Понравилась статья - поделитесь с друзьями:

Подпишитесь на новости сайта:

Ваш e-mail: *
Ваше имя: *

Оставляйте пожалуйста комментарии в форме ниже

Ваш отзыв