Основные содержательные линии в математике – решение текстовых задач и уравнений

решение текстовых задачПродолжаем тему «основные содержательные линии курса математики начальной школы». В предыдущих статьях этой рубрики, мы рассматривали такие темы, как нумерация, величины, вычислительные навыки и значение выражения. В этой статье мы рассмотрим такую содержательную линию, как «решение текстовых задач» и уравнений.

решение текстовых задач

Начнем как всегда с первого класса. Здесь решаются простые текстовые задачи на тему нахождения суммы или остатка, увеличение или уменьшение на несколько единиц, нахождение слагаемого. А также составные задачи, где находят сумму и остаток.

Во втором классе решаются такие простые задачи, как нахождение уменьшаемого и вычитаемого, разностное сравнение, нахождение произведения, деление на равные части, деление по содержанию, а также увеличение и уменьшение в несколько раз. Составные задачи дети решают на темы увеличение либо уменьшение и нахождение суммы и увеличение либо уменьшение и разностное сравнение.

В третьем классе решаются простые текстовые задачи на кратное сравнение, определение длины пути, времени движения и скорости, а также на определение цены и стоимости. Составные задачи – решаются на темы:

  • нахождение уменьшаемого, вычитание, остатка;
  • нахождение суммы и деление на части;
  • нахождения суммы и произведения;
  • нахождения произведения и деление на части.

В четвертом классе в простых задачах определяют производительность, время работы и объем работы, расход материалов, а также решаются задачи на движение в противоположных направлениях. Составные задачи решаются на все арифметические действия.

Решение уравнений

Эта тема начинается с третьего класса с нахождения неизвестного компонента арифметических действий. Во втором классе уже решаются простые и сложные уравнения.

В следующей статье мы рассмотрим тему «геометрический материал». Спасибо за использование нашего ресурса.

Основные содержательные линии в математике – найти значение выражения

найти значение выраженияПродолжаем рубрику  «основные содержательные линии курса математики начальной школы». В предыдущих статьях мы уже рассмотрели такие содержательные линии как нумерация, величины и вычислительные навыки. Сегодня мы рассмотрим тему «найти значение выражения», в которой выясним значения, каких выражений учатся находить ученики начальной школы.

Начнем с первого класса.  Изучая темы «сумма» и «разность», дети впервые сталкиваются с понятием «выражение» и «значение выражения». Здесь осваиваются такие правила, как переместительный закон сложения, сложение и вычитание с числом 0. Все арифметические выражения сейчас осваиваются пока без скобок. В качестве рациональных приемов вычислений, здесь используется группировка слагаемых.

Во втором классе, помимо сложения и вычитания  изучают умножение и деление, а так же названия компонентов арифметических действий. Осваиваются такие правила, как переместительный закон умножения, сочетательные законы сложения и умножения, умножение и деление с числами 0 и 1, порядок действий и нахождение значения выражения со скобками. В качестве рациональных приемов вычислений используется группировка множителей. Дети учатся сами контролировать результаты своих вычислений: вычитание контролируется сложением, а деление – умножением.

В третьем классе изучается распределительный закон. Здесь используются такие приемы вычислений, как вычитание числа из суммы и суммы из числа, умножение и деление суммы на число, а также признаки делимости на 2, 3, 4, 5, 6, 9. Контролировать себя ученика помогает определение последней цифры результата вычислений и определение числа сотен в ответе.

И наконец, в четвертом классе изучаются числовые выражения, происходит знакомство с буквенными выражениями, но без использования терминов. Дети учатся находить значения выражения с переменной. Используются такие рациональные приемы, как разложение на удобные слагаемые при сложении и вычитании, а также разложение на удобные множители при умножении и делении. Проверяют себя дети путем оценки результатов вычислений и определения числа цифр в ответе.

Следующую тему – «решение текстовых задач» читайте в следующей статье. Спасибо, что вы с нами.

Основные содержательные линии в математике – вычислительные навыки

вычислительные навыки в начальной школеПродолжаем тему  «основные содержательные линии курса математики начальной школы». В предыдущей статье мы рассмотрели такие линии, как «нумерации» и «величины». Продолжим далее по списку, представленному в предыдущей статье, и рассмотрим освоение учениками начальной школы вычислительных навыков.

Сложение и вычитание

В первом классе начальной школы дети осваивают сложение и вычитание в пределах 10, а также в пределах 100 без перехода через десяток.

Во втором классе сложение и вычитание осваивается уже сначала в пределах 20 с переходом через десяток, затем в пределах 100, также с переходом через десяток. Также осваивается письменное вычисление двухзначных чисел «в столбик».

В третьем классе осваивается сложение с переходом через разряд в пределах 10000, а также вычитание с переходом через разряд в пределах 1000. Дети устно складывают и вычитают круглые числа в пределах 1000, письменно – трехзначные числа.

В четвертом классе осваивается сложение и вычитание многозначных чисел, уже в пределах 1000000. Устно складывают и вычитают круглые числа, такие как тысячи и миллионы, а письменно – многозначные числа в пределах миллиона.

На нашем сайте Вы можете посмотреть видеоуроки сложение и вычитание.

Умножение и деление

Освоение таких вычислительных навыков, как умножение и деление начинается со второго  класса, здесь осваивается таблица умножения, а также соответствующие случаи деления.

В третьем классе осваивается умножение трехзначных чисел на однозначное число, а также деление с остатком. Деление осуществляется трехзначных чисел на однозначное число, берутся простые случаи. Устно осуществляется внетабличное умножение двухзначных чисел на однозначные, умножение и деление на 10 и на 100, а также умножение и деление десятков на однозначное число. Письменно умножаются и делятся трехзначные числа на однозначные.

В четвертом классе осваивается умножение и деление многозначных чисел на двухзначные и трехзначные числа в пределах миллиона. Устно вычисляются круглые числа, а именно умножение и деление на двузначное число в пределах 100. Письменно умножаются и делятся многозначные числа на двузначные и трехзначные числа.

О том, что такое умножение и деление Вы можете прочитать на нашем сайте, а также здесь Вы можете найти информацию о том как выучить таблицу умножения.

На этом мы прервем наши исследования и продолжим их в следующей статье “найти значение выражения“.

Если вы хотите получать информацию о новых статьях и проектах нашего сайта, то подпишитесь на рассылку новостей сайта. Всего вам наилучшего и успехов. Спасибо.

Основные содержательные линии в математике – нумерация и величины

математика в начальной школеВ этой статье начинается рубрика «основные содержательные линии в курсе математики начальной школы». Здесь мы разберем, как развивается изучение основных математических понятий с каждым классом начальной школы. Мы рассмотрим такие основные линии, как:

Итак, начнем по порядку.

Изучение нумерации

В первом классе наши дети изучают числа до 100. Чтение, запись и последовательность, а также десятичный состав. Далее во втором классе изучаются уже сотни до тысячи.

Изучается разрядность – единицы, десятки и сотни. Затем в третьем классе изучаются числа до 10000 – чтение, запись, последовательность и разрядный состав.

И наконец, в четвертом классе изучаются числа до 1000000.

Изучение величин

Единицы длины начинают изучаться в первом классе с такой величины, как сантиметр. Во втором классе изучаются такие величины, как миллиметр, метр и километр. Изучаются соотношения: 1см = 10мм, 1м = 100см, 1км = 1000м. Дети учатся переводить сантиметры в миллиметры. В третьем классе изучается величина дециметр и соотношения: 1дм = 10см, 1м = 10дм. Переводятся метры в сантиметры, сантиметры в дециметры и обратно. И, наконец, в четвертом классе, дети, продолжая переводить разные величины учатся переводить километры в метры, метры в дециметры, дециметры в миллиметры и обратно.

Единицы площади начинают изучаться со второго класса такими величинами, как квадратный метр, квадратный сантиметр и квадратный километр. В третьем классе используются названия единиц площади в задачах. В четвертом классе дети узнают такие величины, как квадратный дециметр, ар, гектар, квадратный километр. Изучаются соотношения: 1 кв.см = 100 кв.мм, 1 кв.дм = 100 кв.см, 1 кв.м = 100 кв.дм.

Единицы вместимости – в первом классе встречается название литр. Во втором – используются единицы вместимости в задачах, как и в третьем и в четвертом классе.

Единицы времени начинают изучать во втором классе с таких величин, как час и минута. Дети узнают соотношение 1ч = 60 мин. В третьем классе уже изучаются секунды, сутки, неделя, месяц, год и их соотношения: 1мин = 60с, 1сут = 24ч, 1неделя = 7 суткам, 1 год = 365 (366) суткам. А также перевод часов в минуты, минут с секунды, сутки в часы и обратно. В четвертом классе проходят такие величины, как век, тысячелетие и соотношение: 1век = 100годам.

Единицы скорости начинают изучаться с третьего класса с названий: км/ч, км/мин, км/с, м/мин и м/с. В четвертом классе используются названия единиц скорости в задачах.

Единицы массы изучаются с первого класса и начинаются с названия – килограмм. Во втором классе используются названия единиц массы в задачах. В третьем классе уже изучаются величины: тонна, грамм, килограмм и их соотношения: 1кг = 1000г, 1т = 1000кг, а также перевод единиц: килограммы в граммы и обратно. В четвертом классе изучается название центнер и соотношения: 1ц = 100кг, 1т = 10ц, а также перевод килограммов в центнеры, килограммов в тонны, центнеры в тонны и обратно.

В следующих статье этого цикла мы рассмотрим тему “вычислительные навыки” .

Деление в столбик

Деление многозначных или многоразрядных чисел удобно производить письменно в столбик. Давайте разберем, как это делать. Начнем с деления многоразрядного числа на одноразрядное, и постепенно увеличим разрядность делимого.

Итак, поделим 354 на 2. Для начала разместим эти числа как показано на рисунке:

деление в столбик

Делимое размещаем слева, делитель справа, а частное будем записывать под делителем.

Теперь начинаем делить делимое на делитель поразрядно слева на право. Находим первое неполное делимое, для этого берем первый слева разряд, в нашем случае 3 и сравниваем с  делителем.

3 больше 2, значит 3 и есть неполное делимое. Ставим точку в частном и определяем, сколько ещё разрядов будет в частном – столько же, сколько осталось в делимом после выделения неполного делимого. В нашем случае в частном столько же разрядов, сколько в делимом, то есть старшим разрядом будут сотни:

delen_v_st_2

Для того чтобы 3 разделить на 2 вспоминаем таблицу умножения на 2 и находим число при умножении которого на 2 получим наибольшее произведение, которое меньше 3.

2 × 1 = 2               (2 < 3)

2 × 2 = 4               (4 > 3)

2 меньше 3, а 4 больше, значит, берем первый пример и множитель 1.

Записываем 1 в частное на место первой точки (в разряд сотен), а найденное произведение записываем под делимым:

delen_v_st_3

Теперь находим разность, между первым неполным делимым и произведением найденного разряда частного и делителем:

delen_v_st_4

Далее находим второе неполное делимое, для этого значение следующего разряда делимого опускаем к разности:

delen_v_st_5

Полученное значение сравниваем с делителем. 15 больше 2, значит, мы нашли второе неполное делимое. Для того чтобы найти результат деления 15 на 2 вновь вспоминаем таблицу умножения на 2 и находим наибольшее произведение, которое меньше 15:

2 × 7 = 14             (14 < 15)

2 × 8 = 16             (16 > 15)

Искомый множитель 7, записываем его в частное на место второй точки (в десятки). Находим разность между вторым неполным делимым и произведением найденного разряда частного и делителя:

delen_v_st_6

Продолжаем деление, для чего находим третье неполное делимое. Спускаем следующий разряд делимого:

delen_v_st_7

Делим неполное делимое на 2, полученное значение ставим в разряд единиц частного. Проверим правильность деления:

2 × 7 = 14

Результат деления третьего неполного делимого на делитель пишем в частное, находим разность:

delen_v_st_8

Разность мы получили равную нулю, значит деление произведено правильно.

Читать полностью »

Загадочные простые числа

Еще со времен древних греков простые числа были очень привлекательны для математиков. Они постоянно ищут разные способы их нахождения, но самым эффективным способом «поимки» простых чисел, считается способ, найденный александрийским астрономом и математиком Эратосфеном. Этому способу уже около 2000 лет.

какие числа простые

Какие числа являются простыми

Как же определить простое число? Многие числа делятся без остатка на другие числа. Число, на которое делится целое число, мы называем делителем.

В данном случае мы говорим о делении без остатка. Например, число 36 можно разделить на 1, 2, 3, 4, 6, 9, 12, 18 и на само себя, то есть на 36. Значит, 36 имеет 9 делителей. Число 23 делится только на себя и на 1, то есть это число имеет 2 делителя – это число является простым.

Числа, которые имеют только два делителя, называются простыми числами. То есть, число, которое делится без остатка только на себя и на единицу, называется простым.

Для математиков открытие закономерностей в ряду чисел, которые потом можно использовать для построения гипотез, является очень приятным событием. Но простые числа отказываются подчиняться хоть какой-нибудь закономерности. Но есть способ определения простых чисел. Этот способ найден Эратосфеном, он называется «решетом Эратосфена». Давайте рассмотрим вариант такого «решета», представленный в виде таблицы чисел до 48 и поймем, как она составлена.

решето эратосфена

В этой таблице все простые числа меньше 48 отмечены оранжевым цветом. Найдены они так:

  • 1 – имеет единственный делитель и поэтому не является простым числом;
  • 2 – наименьшее простое число и единственное четное, так как все остальные четные числа делятся на 2, то есть имеют не меньше 3 делителей, эти числа сведены в фиолетовую колонку;
  • 3 – простое число, имеет два делителя, все остальные числа, которые делятся на 3, исключаются – эти числа сведены в желтую колонку. Колонка, отмеченная и фиолетовым, и желтым, содержит числа делящиеся и на 2 и на 3;
  • 5 – простое число, все числа, которые делятся на 5, исключаются – эти числа обведены зеленым овалом;
  • 7 – простое число, все числа, которые делятся на 7, обведены красным овалом – они не являются простыми;

Все числа не являющиеся простыми отмечены синим цветом. Далее эту таблицу можно составить самому по образу и подобию.

Самое большое число, которое рассчитано математиками, записывается 25962 знаками.

Если вы хотите получать анонсы наших статей, подпишитесь на рассылку “Новости сайта”.

Деление и другие математические действия

Мы уже говорили о делении и об основных правилах деления. Продолжим изучать деление и разберем, как можно упростить некоторые примеры с участием деления, такие как:

  1. Деление произведения двух чисел на число;
  2. Деление числа на произведение двух чисел;
  3. Деление суммы двух чисел на третье число;
  4. Деление разности двух чисел на третье число;
  5. Сумма или разность двух частных, в которых делители одинаковы.

Деление произведения двух чисел на число

Чтобы разделить произведение двух чисел на число, разделите на это число один из множителей, а полученное частное умножьте на второй множитель.

del_id1

Например:

36 × 7 ÷ 4 = (36 ÷ 4) × 7 = 9 × 7 = 63

15 × 44 ÷ 11 = (44 ÷ 11) × 15 = 4 × 15 = 60

Если ни один из множителей не делится на третье число, то следует вычислить произведение двух первых чисел и потом поделить на третье число.

15 × 24 ÷ 9 = 360 ÷ 9 = 40

Деление числа на произведение двух чисел

Чтобы разделить число на произведение двух чисел, разделите это число на один из множителей, а затем полученное частное разделите на другой множитель.

2.	Деление числа на произведение двух чисел

Например:

432 ÷ (36 × 6) = 432 ÷ 36 ÷ 6 = 2

3072 ÷ (12 × 32) = 3072 ÷ 12 ÷ 32 = 8

Этот прием называется приемом последовательного деления.

Деление суммы двух чисел на третье число

Чтобы разделить сумму двух чисел на третье число, разделите каждое слагаемое суммы на это число, а затем сложите полученные частные.

3.	Деление суммы двух чисел на третье число

Например:

(28 + 42) ÷ 7 = 28 ÷ 7 + 42 ÷ 7 = 10

Если числа в скобках не делятся на третье число, то вычисляем по правилам «порядка выполнения математических действий».

(115 + 95) ÷ 6 = 35

Для удобства деления представьте делимое суммой двух чисел:

96 ÷ 8 = (40 + 56) ÷ 8 = 40 ÷ 8 + 56 ÷ 8 = 12 Читать полностью »

Выражения с переменными. Буквенные равенства и неравенства.

Выражения с переменными

Выражениями с переменными называются выражения содержащие переменные.

В качестве переменных в выражениях используются буквы, поэтому их также называют буквенными выражениями. Буквенные выражения могут содержать как несколько букв, так и одну букву.

Например:

Выражения с перменными

 

буквенные выражения

 

В задачах и примерах буквенные выражения используются для вычисления выражений с заданными переменными. То есть вместо букв надо подставить заданные значения:

Вычислить выражение

VsP31

Подставляем в выражение значения вместо букв:

VsP32

Произведения с переменными записывают без знака умножения (·):

VsP33

Если в выражениях участвует деление, такие выражения записывают в виде дроби:

VsP3

Соответственно выражение в предыдущем примере можно записать следующим образом:

VsP4

Давайте рассмотрим ещё один пример:VsP5

при x = 2

Если в выражении встречается несколько раз одна и та же буква (переменная), то ей соответствует одно и то же значение.

В таком случае решение будет следующим:

VsP6 Читать полностью »

Числовые равенства и неравенства

Числовые равенства

Чтобы получить запись, называемую числовым равенством, надо два числовых выражения соединить знаком равенства (=).

Пример:

Числовые равенства

Представленный пример является верным числовым равенством, но числовое равенство может быть неверным:

Неверное числовое равенство

Давайте разберем свойства числовых равенств.

  1. Если числовое равенство верно, то прибавив к обеим частям этого равенства одно и тоже число мы получим верное числовое равенство.

первое свойство числовых равенств

Например:

Проверим равенство

(12 + 3) = (9 + 6)

12 + 3 = 15 и 9 + 6 = 15

Равенство верно, теперь проверим свойство

(12 + 3) + (5 – 2) = (9 + 6) + (5 – 2)

15 + (5 – 2)15 + (5 – 2)

18 = 18

В обоих случаях равенства верны

 

То же самое произойдет, если мы вычтем одно и то же числовое выражение из обеих частей верного числового равенства.

второе свойство числовых равенств

Проверим это свойство на предыдущем примере заменив действие сложение на вычитание:

(12 + 3) (5 – 2) = (9 + 6) (5 – 2)

15 + (5 – 2)15 + (5 – 2)

12 = 12

Как мы видим равенство верно.

 

  1. Если числовое равенство верно, то умножив обе части этого равенства на одно и тоже числовое выражение мы получим верное числовое равенство.

третье свойство числовых равенство

Проверим и это свойство:

(75 – 3) = (15 + 57)

75 – 3 = 72 и 15 + 57 = 72 это равенство верно

(75 – 3) · (10 – 2) = (15 + 57) · (10 – 2)

72 · (10 – 2) = 72 · 8 = 576

576 = 576

Свойство доказано.

Читать полностью »

Умножение в столбик

Умножение многозначных или многоразрядных чисел удобно производить письменно в столбик, последовательно умножая каждый разряд. Давайте разберем, как это делать. Начнем с умножения многоразрядного числа на одноразрядное число и постепенно увеличим разрядность второго множителя.

Для того чтобы умножить в столбик два числа, разместите их одно под другим, единицы под единицами, десятки под десятками и так далее. Сравните два множителя и меньший разместите под большим. Затем начинайте умножать каждый разряд второго множителя на все разряды первого множителя.

Умножение многозначного числа на однозначное

Пишем однозначное число под единицами многозначного.

умножение в столбикУмножаем 2 последовательно на все разряды первого множителя:

Умножаем на единицы:

8 × 2 = 16

6 пишем под единицами, а 1 десяток запоминаем. Для того, чтобы не забыть пишем 1 над десятками.

Умножаем на десятки:

3 десятка × 2 = 6 десятков + 1 десяток(запоминали) = 7 десятков. Ответ пишем под десятками.

Умножаем на сотни:

4 сотни × 2 = 8 сотен. Ответ пишем под сотнями. В результате получаем:

438 × 2 = 876

Умножение многозначного числа на многозначное

Умножим трехзначное число на двухзначное:

924 × 35

Пишем двухзначное число под трехзначным, единицы под единицами, десятки под десятками.

Умножение в столбик многозначного числа на многозначное1 этап: находим первое неполное произведение, умножив 924 на 5.

Умножаем 5 последовательно на все разряды первого множителя.

Умножаем на единицы:

4 × 5 = 20             0 пишем под единицами второго множителя, 2 десятка запоминаем.

Умножаем на десятки:

2 десятка × 5 = 10 десятков + 2 десятка (запоминали) = 12 десятков, пишем 2 под десятками второго множителя, 1 запоминаем.

Умножаем на сотни:

9 сотен × 5 = 45 сотен + 1 сотня (запоминали) = 46 сотен, пишем 6 под разрядом сотен, а 4 под разрядом тысяч второго множителя.

924 × 5 = 4620

2 этап: находим второе неполное произведение, умножив 924 на 3.

Умножаем 3 последовательно на все разряды первого множителя. Ответ пишем под ответом первого этапа, сдвинув его на один разряд влево.

Умножаем на единицы:

4 × 3 = 12             2 пишем под разрядом десятков, 1 запоминаем.

Умножаем на десятки:

2 десятка × 3 = 6 десятков + 1 десяток (запоминали)  =  7 десятков, пишем 7 под разрядом сотен.

Умножаем на сотни:

9 сотен × 3 = 27 сотен, 7 пишем в разряд тысяч, а 2 в разряд десятков тысяч.

3 этап: складываем оба неполных произведения.

Складываем поразрядно, учитывая сдвиг.

В результате получаем:

924 × 35 = 32340 Читать полностью »